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Purpose. Membrane-interaction quantitative structure-activity rela-
tionship (QSAR) analysis (MI-QSAR) has been used to develop
predictive models of blood–brain barrier partitioning of organic com-
pounds by, in part, simulating the interaction of an organic compound
with the phospholipid-rich regions of cellular membranes.
Method. A training set of 56 structurally diverse compounds whose
blood–brain barrier partition coefficients were measured was used to
construct MI-QSAR models. Molecular dynamics simulations were
used to determine the explicit interaction of each test compound
(solute) with a model DMPC monolayer membrane model. An ad-
ditional set of intramolecular solute descriptors were computed and
considered in the trial pool of descriptors for building MI-QSAR
models. The QSAR models were optimized using multidimensional
linear regression fitting and a genetic algorithm. A test set of seven
compounds was evaluated using the MI-QSAR models as part of a
validation process.
Results. Significant MI-QSAR models (R2 � 0.845, Q2 � 0.795) of
the blood–brain partitioning process were constructed. Blood–brain
barrier partitioning is found to depend upon the polar surface area,
the octanol/water partition coefficient, and the conformational flex-
ibility of the compounds as well as the strength of their “binding” to
the model biologic membrane. The blood–brain barrier partitioning
measures of the test set compounds were predicted with the same
accuracy as the compounds of the training set.
Conclusion. The MI-QSAR models indicate that the blood–brain
barrier partitioning process can be reliably described for structurally
diverse molecules provided interactions of the molecule with the
phospholipids-rich regions of cellular membranes are explicitly con-
sidered.

KEY WORDS: blood–brain barrier partitioning; QSAR; solute-
membrane binding; conformational flexibility.

INTRODUCTION

Central nervous system (CNS) therapeutic agents must
cross the blood–brain barrier (BBB) to be effective, whereas
peripherally acting drugs must possess very limited ability to
cross the BBB. The uptake of a compound into the brain is a
complex process (1–4). However, it is seen that moderately
lipophilic drugs can cross the BBB by passive diffusion and
that the hydrogen bonding properties of drugs significantly
influences their particular CNS uptake profiles. Polar mol-
ecules are generally poor CNS agents unless they undergo
active transport across the CNS. Size, ionization properties,

and molecular flexibility are other factors observed to influ-
ence transport of an organic compound across the BBB (4).

It has been shown that in addition to unproved efficacy
and toxicity, inadequate pharmacokinetic properties result in
the withdrawal of a large proportion of drug leads from fur-
ther development (5). BBB penetration is one of the most
critical pharmacokinetic issues in the design of CNS active
drugs and a toxicity concern in the development of other
classes of drugs. Experimental measurement of BBB parti-
tioning is difficult, tedious, time-consuming, and costly. More-
over, current experimental approaches to measure BBB par-
titioning are not amenable to high-throughput screening
(HTS), as is becoming increasingly in demand in preclinical
drug discovery. Some attempts at HTS of membrane perme-
ation measurements and artificial membrane-based methods
have been performed and show promise (6,7).

Recently there has been a surge in computational efforts
to compute absorption, distribution, metabolism, excretion,
and toxicity (ADMET) properties, including BBB partition-
ing, of structurally diverse compounds, including drugs (8–
14). These new computational approaches remain focused on
modeling structurally diverse (solute) data sets by dealing
only with the properties of the solutes. Moreover, the solute
properties have been largely limited to relative lipophilicity
indices, solvation and hydrogen bond parameters, topological
indices, and limited three-dimensional solute features. A phi-
losophy has been adopted to get around the limitations of
performing a QSAR analysis on a structurally diverse data
set. The number of intramolecular solute properties com-
puted is made as large as possible, and then some type of data
reduction method is used as part of the data fitting process in
constructing the QSAR model. The idea behind this philoso-
phy is that if enough solute features are included, the key
intramolecular solute properties for describing multiple
mechanisms of action (BBB partitioning) will be captured
and built into the QSAR model without doing data overfit-
ting. Of course, there is no way to know 1) if the right set of
intramolecular solute features are included in the QSAR de-
scriptor pool and, if indeed, 2) any set of intramolecular sol-
ute descriptors exist that can capture the requisite mechanis-
tic information by themselves.

Moreover, once data reduction is performed it becomes
exceedingly difficult to interpret the resultant QSAR model
and to gain insight into mechanisms of action. The QSAR is
in a particular data reduction space and not in actual physi-
cochemical property space. Clearly, some type of structure-
based design QSAR approach is needed to meaningfully
handle the chemical and structural diversity of the solutes of
the training sets encountered in constructing absorption, dis-
tribution, metabolism, excretion, and toxicity properties
(BBB partitioning) QSAR models.

We have developed a methodology called membrane-
interaction (MI)-QSAR analysis, where structure-based de-
sign methodology is combined with classic intramolecular
QSAR analysis to model chemically and structurally diverse
compounds interacting with cellular membranes (15–17). In
MI-QSAR analysis, the assumption is made that the phos-
pholipid regions of a cellular membrane constitute the recep-
tor required in structure-based design that permits the incor-
poration of structural and chemical diversity into a training
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Table I. Molecular Weights and Log BB Values for the Molecules of
the Training and Test Sets

Molecule
MW

(a.m.u.) log BB

Training set

1 252.34 −1.42

2 156.21 −0.04

3 379.46 −2.00

4 448.58 −1.30

5 413.54 −1.06

6 230.10 0.11

7 285.39 0.49

8 280.41 0.83

9 314.40 −1.23

10 312.41 −0.82

11 204.23 −1.17

12 342.26 −2.15

Table I. Continued

Molecule
MW

(a.m.u.) log BB

Training set

13 357.22 −0.67

14 278.33 −0.66

15 368.45 −0.12

16 218.28 −0.18

17 233.29 −1.15

18 275.33 −1.57

19 314.37 −1.54

20 324.40 −1.12

21 414.52 −0.73

22 326.35 −0.27

23 337.38 −0.28

24 290.41 −0.46

25 352.48 −0.24

26 249.35 −0.02
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Table I. Continued

Molecule
MW

(a.m.u.) log BB

Training set

27 325.45 0.69

28 331.48 0.44

29 381.54 0.14

30 365.47 0.22

31 butanone 72.11 −0.08

32 benzene 78.11 0.37

33 3-methylpentane 86.18 1.01

34 3-methylhexane 100.20 0.90

35 2-propanol 60.10 −0.15

36 2-methylpropanol 74.12 −0.17

37 2-methylpentane 86.18 0.97

38 2,2-dimethylbutane 86.18 1.04

39 1,1,1-trifluoro-2-chloroethane 118.49 0.08

40 1,1,1-trichloroethane 133.41 0.40

41 diethyl ether 74.12 0.00

42 enflurane 184.49 0.24

43 ethanol 46.07 −0.16

44 fluroxene 126.08 0.13

45 halothane 211.41 0.35

46 heptane 100.20 0.81

47 hexane 86.18 0.80

48 isoflurane 184.49 0.42

49 methane 16.04 0.04

50 methylcyclopentane 84.16 0.93

Table I. Continued

Molecule
MW

(a.m.u.) log BB

Training set

51 pentane 72.15 0.76

52 propanol 46.07 −0.16

53 propanone 58.08 −0.15

54 teflurane 194.95 0.27

55 toluene 92.14 0.37

56 trichloroethene 131.39 0.34

Test Set

T1 150.22 −0.06

T2 161.21 −1.40

T3 260.38 0.25

T4 236.27 0.00

T5 252.27 −0.34

T6 373.80 −1.34

T7 277.41 0.85
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set. A set of membrane-solute intermolecular properties are
determined and added to a set of comprehensive intramolecu-
lar solute QSAR descriptors to enlarge the trial QSAR de-
scriptor pool and, ostensibly, to provide the information
needed to incorporate chemical and structural diversity into
the QSAR analysis.

MI-QSAR analysis has been successfully applied to con-
struct robust models of both eye and skin irritation for struc-
turally diverse training sets (15,16), and to predict the Caco-2
cell permeability of a diverse set of drugs (17). The goal of the
study reported here is to demonstrate the applicability of MI-
QSAR analysis to model and predict another ADME prop-
erty, namely BBB partitioning.

METHODS

BBB Partition Coefficients

The dependent variable used in this MI-QSAR analysis
is the logarithm of the BBB partition coefficient, log BB �
log (Cbrain/Cblood), where Cbrain is the concentration of the
test compound in the brain, and Cblood is the concentration of
the test compound in blood. Experimental values of log BB
published to date lie approximately between −2.00 to +1.00.
Compounds with log BB values of >0.3 are readily distributed
to the brain whereas compounds with values <−1 are poorly
distributed to the brain (18).

Abraham and coworkers (19) have reported a BBB study
based on a training set of 57 structurally and chemically di-
verse molecules. This popular data set has been used in a
number of other reported BBB penetration studies (9,10). We
omitted one molecule (N2) from this data set for lack of suf-
ficient computed properties, and used the remaining 56 com-
pounds as the training set for the BBB MI-QSAR study. This
training set has a range in molecular weights from 16.03 to
448.58 amu, the concentrations in blood and brain were mea-
sured in units of �M/mL, and there are variations in net
charge at pH 7.4. Table I, Part A contains the chemical struc-
tures and log BB values of the training set compounds. Seven
test compounds were selected from the literature whose log
BB values were determined by the same protocol used to
determine the log BB values of the training set compounds.
These seven compounds were used as a validation set and
their structures and log BB values are given in Table I, Part B.
The test set was established by insisting that its members be
representative of all members of the training set in terms of
the range of log BB values.

Building Solute Molecules and a
Dimyristoylphosphatidylcholine (DMPC) Monolayer

All the solute molecules of the training and test sets
(Table I) were built using the Chemlab-II molecular modeling
package (20). A single DMPC molecule was built using Hy-
perChem from available crystal structure data (21,22). The
AM1 Hamaltonian in Mopac 6.0 was used for the estimation
of partial atomic charges on all molecules (23). DMPC was
selected as the model phospholipid in this study.

An assembly of 16 DMPC molecules (4 × 4 × 1) in (x,y,z)
directions, respectively, was used as the model membrane
monolayer. The size of the monolayer simulation system was
selected based on the work done by van der Ploeg and Ber-

endsen (24). These workers performed a molecular dynamic
simulation (MDS) study for two decanoate bilayers having (2
× 8 × 2) and (2 × 16 × 2) phospholipid molecules. It was found
that the estimated order parameters for these two model bi-
layers agree with one another suggesting that the smaller as-
sembly is adequate for modeling short-range properties.
Other researchers have obtained similar geometric and ener-
getic equilibrium property values with regard to the size of
model simulation system permitting a minimum effective size
(number of phospholipids) of the monolayer to be defined
(25). Additional information regarding construction of the
model monolayer used in this MI-QSAR analysis can be
found in Refs. 15 and 16.

Molecular Dynamics Simulation

The conditions set for the MDS were established in the
previous MI-QSAR analyses (15–17) and are only summa-
rized here. An initial MDS on the model membrane, without
a solute molecule present, was conducted to allow for struc-
tural relaxation and distribution of the kinetic energy over the
monolayer. In order to prevent unfavorable van der Waals
interactions between a solute molecule and the membrane
DMPC molecules, one of the “center” DMPC molecules was
removed from the equilibrated monolayer and a test solute
molecule inserted in the space created by the missing DMPC
molecule. Each of the test solute molecules of the training set
was inserted at three different positions (depths) in the
DMPC monolayer with the most polar group of the solute
molecule “facing” toward the head group region of the mono-
layer. Three corresponding MDS models were generated for
each solute molecule with regard to the trial positions of the
solute molecule in the monolayer. The three trial positions were,

1. Solute molecule in the head group region.
2. Solute molecule in between the head group region

and the aliphatic chains
3. Solute molecule in the tail region of the aliphatic chains.

The lowest energy geometry of the solute molecule in the
monolayer was sought using each of the three trial solute
positions. The three different initial MDS positions of ethanol
(no. 43 of the training set solute molecules) are shown in Fig.
1a to illustrate this modeling procedure. The energetically
most favorable geometry of this solute molecule in the model
DMPC monolayer is shown in Fig. 1b.

MDS were performed using the Molsim package with an
extended MM2 force field (26). The selection of the simula-
tion temperature was based on the phase transition tempera-
ture for DMPC, which is 297°K (27). A simulation tempera-
ture of 311°K was selected because it is normal body tem-
perature and also above the DMPC phase transition
temperature. Temperature was held constant in the MDS by
coupling the system to an external fixed temperature bath
(28). The trajectory step size was 0.001 ps over a total simu-
lation time of 12 ps for each test compound. Two-dimensional
periodic boundary conditions, corresponding to the “surface
plane” of the monolayer, were used (a � 32Å2, b � 32Å2, c
� 80Å2, and � � 96.0°) for the DMPC molecules of the
monolayer model but not the test solute molecule. The angle �
is the angle an extended DMPC molecule makes with the “pla-
nar surface” of the monolayer. Every membrane-solute system,
for the solutes of the training and test sets used in the BBB
study, reached equilibrium by 1500 trajectory steps, that is 1.5 ps.
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Calculation of Descriptors

Both intramolecular physicochemical properties and fea-
tures of the training set solute molecules, and intermolecular
solute-membrane interaction properties were calculated.
“Properties” and “features” will both be referred to as de-
scriptors from this point forward because they constitute the
trial pool of independent variables used to build the QSAR
models. The descriptors used in the MI-QSAR analysis can
also be divided into 1) solute aqueous dissolution and solva-
tion descriptors; 2) solute-membrane interaction descriptors;
and 3) general intramolecular solute descriptors. The tables
reporting the trial pool of descriptors used in the MI-QSAR
modeling of BBB partitioning uses both classifications of the
descriptors. Most of the general intramolecular descriptors
used were calculated using Cerius2 (29) whereas ClogP was
calculated using Daylight software (30) and polar surface area
values of the training and test set molecules were taken from
the study reported by Clark (10). The general intramolecular
solute descriptors included as part of the trial descriptor pool
are defined in Table II. The term general is used because
solute descriptors in this class may be useful in describing
different aspects of the bioavailability of a solute.

It should be noted that F(H2O), F(OCT), and ClogP, the
aqueous and 1-octanol solvation free energies of the solutes
and the corresponding 1-octanol/water partition coefficient,
respectively, are computed using intramolecular computa-
tional methods. This is also true for E(coh), TM, and TG, the
cohesive energy and the hypothetical crystal-melt and glass
transition temperatures of the solutes, which are used to es-
timate solute dissolution properties. However, all of these
descriptors are intermolecular properties, the first three re-
lating to solute solvation, and the last three to solute disso-
lution. Therefore, these descriptors are classified as solvation
and dissolution intermolecular descriptors and are reported
as Part B of Table III.

E(coh) is a measure of the energy required to remove a
molecule from being surrounded by other molecules like it-
self. TM measures the crystal packing strength of a molecule,
and TG measures the amorphous packing strength of a mol-
ecule. The assumption is made here that E(coh), TM, and TG,
taken in composite, can used to describe the dissolution be-
havior of any solute when developing an MI-QSAR model.

The intermolecular solute-membrane interaction de-
scriptors were extracted directly from the MDS trajectories.
These particular intermolecular descriptors were calculated
using the most stable (lowest total potential energy) solute-
membrane geometry realized from MDS sampling of the
three initial positions. The intermolecular membrane-solute
descriptors extracted from MDS trajectories are given in
Table III part A. E(total) is the total potential energy of the
membrane-solute complex at the most favorable position ex-
tracted from the MDS trajectory, whereas EINTER(total) is
the total intermolecular interaction energy between the
DMPC monolayer and the solute at this position. EINTER(to-
tal) is the sum of the van der Waal, electrostatic and hydrogen
bonding interaction energy between the solute and the mem-
brane. ETT(Z) denotes the various contributions to total sys-
tem potential energy at the optimum (minimum energy) po-
sition, where Z could refer to the hydrogen bond energy,
electrostatic interaction energy, 1,4-nonbonded interaction
energy, general Van der Waals interaction energy, stretching,
bending, torsion energy, or combinations thereof. �ETT(Z)
has the same meaning to its symbols as ETT(Z) but refers to
the change in the particular energy term caused by the uptake
of the solute into the membrane at the minimum total poten-
tial energy position of the membrane-solute system. EMS(Z)
is the intermolecular interaction energy between the mem-
brane and solute at total system minimum potential energy,
where Z refers to intermolecular van der Waals interaction
energy, intermolecular electrostatic energy, intermolecular
hydrogen bonding energy, and combinations thereof. ESS(Z)
is the intramolecular energy of the solute within the mem-
brane at the most favorable energy position, where Z denotes
1,4 nonbonded, stretching, bending, torsion energies, and
combinations thereof. �ESS(Z) has the same meaning as
ESS(Z), except that it refers to the change in the energy of the

Fig. 1. (a) A “side” view of an ethanol molecule inserted at three
different positions in the DMPC model monolayer before the start of
each of the three corresponding MDS used in the MI-QSAR mod-
eling. (b) The lowest energy geometry of a DMPC-ethanol complex
in the MDS.

Table II. The General Intramolecular Solute Descriptors Used as
Part of the Trial MIQSAR Descriptor Pool

HOMO Highest occupied molecular orbital energy
LUMO Lowest occupied molecular orbital energy
Dp Dipole moment
Vm Molecular Volume
SA Molecular surface area
Ds Density
MW Molecular weight
MR Molecular refractivity
N(hba) Number of hydrogen bond acceptors
N(hbd) Number of hydrogen bond donors
N(B) Number of rotatable bonds
JSSA (X) Jurs- Stanton surface area descriptors
PSA Polar surface area
Chi-N, Kappa-M Kier & Hall topological descriptors
Rg Radius of Gyration
Pm Principle moment of inertia
Se Conformational entropy
Q(I) Partial atomic charge densities)
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solute due to its uptake into the membrane at the total inter-
molecular system minimum potential energy.

Construction and Testing of MI-QSAR Models

MI-QSAR models were built and optimized using mul-
tidimensional linear regression fitting and the genetic func-
tion approximation (GFA), which is a multidimensional op-
timization method based on the genetic algorithm paradigm
(31,32). Both linear and quadratic representations of each of
the descriptor values were included in the trial descriptor
pool, and MI-QSAR models were built as a function of the
number of descriptor terms in a model. Statistical significance
in the optimization of an MI-QSAR model was judged jointly
by the correlation coefficient of fit, R2, and the leave-one-out
cross-validation correlation coefficient, Q2. In addition, GFA
uses the Friedman’s lack of fit measure to resist overfitting,
which is a problem often encountered in constructing and
optimizing statistical models (33). MI-QSAR model valida-
tion involved the following:

1. Random scrambling of the dependent variable (log
BB) measures and attempted construction of statistically sig-
nificant corresponding MI-QSAR models (34) and

2. Prediction of the log BB values of the test set and
comparison to the observed values.

The absence of any significant correlation for each of the
scrambled data sets is taken as evidence of the significance of
the MI-QSAR models with respect to the original non-

scrambled data set. Covariance among the descriptors in the
optimized MI-QSAR models was evaluated by constructing
the linear cross-correlation matrix of the descriptors, and by
comparing relative descriptor usage in the crossover optimi-
zation process of the GFA analysis. No significant cross-
correlations exist between the descriptors of the best MI-
QSAR models.

RESULTS

The best log BB MI-QSAR models are constructed using
a combination of general intramolecular solute, intermolecu-
lar solute-solvation, and intermolecular membrane-solute de-
scriptors. The best MI-QSAR models are presented below as
a function of the number of terms, that is, descriptors in-
cluded in a given MI-QSAR model:

1. Term model

log BB � 0.543 − 0.0161PSA (1)

n � 56 R2 � 0.675 Q2 � 0.647

2. Term model

log BB � 0.133 – 0.0153PSA + 0.1522ClogP (2)

n � 56 R2 � 0.744 Q2 � 0.713

3. Term model

log BB � 0.122 – 0.0199PSA + 0.1703ClogP
– 0.0049EMS(chg + hbd) (3)

n � 56 R2 � 0.797 Q2 � 0.759

Table III. The Intermolecular Interaction Descriptors Included in the Trial MI-QSAR Descriptor Poola

Part A.

The membrane-solute
descriptors: symbols Description of the membrane-solute descriptors

<E(total)> Average total potential energy of the solute-membrane complex
EINTER(total) Total intermolecular interaction energy between the solute and the membrane at the total system minimum po-

tential energy
ETT(Z) Z � 1,4-nonbonded, general Van der Waal, electrostatic, hydrogen bonding, stretching, bending, torsion and

combinations thereof energies of the membrane-solute complex at the total system minimum potential energy.
�ETT(Z) Change in the Z � 1,4-nonbonded, general Van der Waal, electrostatic, hydrogen bonding, stretching, bending,

torsion and combinations thereof at the total [solute and membrane model] intermolecular system minimum
potential energy

EMS(Z) Z � Intermolecular Van der Waal, electrostatic, hydrogen bonding interaction and combinations thereof ener-
gies between the solute and the membrane at the total system minimum potential energy

ESS(Z) Z � Intramolecular 1,4-nonbonded, general van der Waal, electrostatic, hydrogen bonding, stretching, bending,
torsion and combinations thereof energies of the solute within the membrane at total system minimum poten-
tial energy

�ESS(Z) Change in the Z � intramolecular 1,4-nonbonded, general van der Waal, electrostatic, hydrogen bonding,
stretching, bending, torsion and combinations thereof energies of the solute due to its uptake to the total in-
termolecular system minimum potential energy.

Part B.

Dissolution and solvation
solute descriptors: symbols Description of the dissolution/solvation solute descriptors

F(H2O) The aqueous solvation free energy
F(OCT) The 1-octanol solvation free energy
ClogP The 1-octanol/water partition coefficient
E(coh) The cohesive packing energy of the solute molecules
TM The hypothetical crystal-melt transition temperature of the solute
TG The hypothetical glass transition temperature of the solute

a Part A includes the membrane-solute interaction descriptors, and Part B lists the intermolecular dissolution and solvation descriptors of the solute.
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4. Term model

log BB � 0.124 – 0.0226PSA + 0.1613ClogP
– 0.0066 EMS(chg + hbd) + 0.0338ESS(tor) (4)

n � 56 R2 � 0.825 Q2 � 0.784

5. Term model

log BB � 0.0156 – 0.0231PSA + 0.1591ClogP
– 0.0071 EMS(chg + hbd) + 0.0346ESS(tor)
+ 0.0075�ETT(1–4) (5)

n � 56 R2 � 0.845 Q2 � 0.795

6. Term model

log BB � −0.015 – 0.0235PSA + 0.1673ClogP
– 0.0076 EMS(chg + hbd) + 0.0388ESS(tor)
+ 0.01�ETT(1-4) – 0.0037�ETT(stre + bend) (6)

n � 56 R2 � 0.855 Q2 � 0.792

n is the number of compounds, R2 is the coefficient of deter-
mination, and Q2 is the cross-validated coefficient of deter-
mination.

The descriptors found in the best MI-QSAR models are
as follows;

1. ClogP is the calculated octanol-water partition coeffi-
cient.

2. PSA is the total polar surface area of a molecule.
3. EMS(chg + hbd) is the total intermolecular electro-

static and hydrogen bonding interaction energy between the
solute and the DMPC monolayer when the solute molecule is
in the optimum membrane-solute interaction state (minimum
potential energy) within the membrane.

4. ESS(tor) is the torsion energy of the solute for the
solute located at the position corresponding to the lowest
solute-membrane interaction energy state of the model sys-
tem.

5. �ETT(1–4) is the change in the 1,4 nonbonded inter-
action energy of the system due to the uptake of the solute
from free-space to the position corresponding to the lowest
solute − membrane interaction energy state of the model sys-
tem.

6. �ETT(stre + bend) is the change in the sum of the total
stretching and bending energy of the complex system due to
the uptake of the solute from free space to the minimum
potential energy state of the membrane-solute complex.

The values of the six descriptors found in the 1 to 6 term
MI-QSAR models for each compound in the training and test
sets are given in Table IV. The observed and predicted, using
the 3 through 6 term MI-QSAR models, log BB values of the
test and training set compounds are listed in Table V and
plotted in Fig. 2. Compound 12 of the training set is predicted
to have a much higher log BB than observed and has been
identified as an outlier. This molecule has also been identified
as an outlier in other studies, (10,13). Protonation and/or a
charged tautomer form of the molecule could account for its
low log BB value.

The 2- through 6-term MI-QSAR models are each suc-
cessive refinements of the preceding smaller descriptor term
model. That is the [n+1]-term MI-QSAR model can be
viewed as essentially the [n]-term model with one new addi-
tional descriptor. The regression coefficients of correspond-

ing descriptor terms across all of the MI-QSAR models are
quite similar to one another indicating their respective roles
in predicting log BB are about the same in each MI-QSAR
model irrespective of the number of descriptor terms in the
model.

A test set of seven solute compounds was constructed as
one way to attempt to validate the MI-QSAR models given
by Eqs. (1–6). The test set solute molecules were selected so
as to span almost the entire range in BBB partitioning. The
observed and predicted log BB values for this test set are
given at the bottom of Table V and plotted as part of Fig. 2.
The 3-6 term MI-QSAR models overpredict log BB for test
molecule T2 and it has been identified as an outlier.

Figure 3 shows plots of R2 and Q2 for the training set, and
R2 for the combined training and test sets, the full set, as a
function of the number of descriptor terms in the 3-6 term
MI-QSAR models. The dip in value of Q2 for the training set
and R2 for the combined training and test sets suggests that
the 6-term model derived from the training set may be an
overfit model.

In addition to the test set given in Table I, 6 sets of 10
compounds have been randomly selected from the training
and original test sets as additional test sets with the constraint
that each set of 10 compounds uniformly spanned the entire
log BB training set range. Full cross-validation has been done
on each of these 6 test sets using the 3- through 6-term MI-
QSAR models given by Eqs. (1–6). The range in Q2 over the
six test sets is from 0.51 (3-term model) to 0.70 (5-term
model). This procedure suggests that the (0.51 to 0.70) range
in Q2 is what should be expected for a typical test set (com-
pound), and may be considered a relative measure of the
range of predictability of the MI-QSAR models given by Eqs.
(1–6).

DISCUSSION

The family of log BB MI-QSAR models found in this
study (Eqs. 1–6) encompasses several significant features and
statistical properties. Three of the six significant descriptors
of the MI-QSAR log BB models have positive regression
coefficients and the other three descriptors have negative re-
gression coefficients. The constant of fit is near zero, and
close to the mean in the log BB range of the training set, for
all models except the one-term model. Despite allowing for
quadratic descriptor terms in the model building process, all
the descriptor terms in the family of MI-QSAR models for log
BB are linear relationships between individual descriptors
and log BB. Overall, these observations regarding the statis-
tical structure of the MI-QSAR family of models strongly
suggest they are very solid and reliable models.

Solute aqueous solvation free energy, F(H2O), which is a
partial measure aqueous solute solubility, plays a major, if not
sometimes dominant, descriptor role in MI-QSAR models for
caco-2 cell permeation and eye irritation potency (15–17).
F(H2O), and more generally, aqueous solvation of the solute,
does not appear to be explicitly involved in the expression of
log BB. The total polar surface area (PSA) descriptor, which
is found as a dominant descriptor in all of the log BB MI-
QSAR models, may include behavior related to the aqueous
solubility of the solute. PSA has been shown to be highly
useful in modeling intestinal absorption (35) and has yielded
models for log BB along with a direct lipophilicity descriptor
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Table IV. Values of the Six Descriptors Found to be the Significant MI-QSAR Terms in Eqs. 1–6a

Molecule no. PSA(Å2) ClogP EMS(chg+hbd) ESS(tor) �ETT(1–4) �ETT(stre+bend)

1 92.100 0.351 −52.460 3.840 20.080 −5.820
2 78.900 0.952 −206.980 3.620 2.530 10.300
3 94.000 2.297 −65.450 4.850 −4.020 37.410
4 73.500 4.046 −10.290 −3.450 20.840 −19.230
5 87.000 1.874 −36.240 6.00 16.920 0.500
6 39.000 0.743 −7.530 5.050 56.590 −6.370
7 26.800 2.787 −7.140 −1.280 12.920 16.900
8 6.000 4.413 −16.520 −2.290 −4.750 26.790
9 84.500 1.327 −10.070 5.810 −18.390 32.430

10 139.200 0.844 −164.150 6.930 6.380 6.580
11 88.800 0.911 −99.350 −1.410 39.480 40.950
12 73.500 2.282 −4.110 1.540 −0.160 34.870
13 83.900 2.747 −6.270 9.100 26.360 −31.110
14 84.000 1.800 −62.080 10.190 12.680 16.780
15 78.000 3.637 −79.530 2.900 15.510 18.940
16 76.600 2.781 −188.830 −5.750 19.070 37.440
17 104.400 1.784 −166.100 −1.350 2.230 19.350
18 108.800 1.977 −139.010 2.380 −1.010 6.650
19 135.800 1.880 −126.240 −2.000 38.660 0.130
20 85.500 2.287 −74.040 11.220 1.250 66.130
21 79.500 4.124 −18.690 6.430 17.680 −34.110
22 82.700 3.849 −80.630 7.260 46.080 29.600
23 85.700 3.234 −13.330 6.880 36.310 −42.070
24 47.900 2.065 2.090 4.870 4.230 −16.610
25 45.200 4.004 −9.810 4.520 23.790 35.130
26 38.500 2.379 0.330 5.260 15.370 32.910
27 39.100 4.259 −7.100 6.650 14.120 21.480
28 40.000 4.165 −27.980 7.100 21.880 9.480
29 39.200 5.759 −10.460 4.420 39.480 23.560
30 54.900 5.029 −33.370 1.070 17.080 −18.340
31 22.700 0.834 −0.690 −6.000 13.120 26.320
32 0.000 2.142 −0.660 −2.900 25.780 15.340
33 0.000 3.738 −0.310 1.760 8.860 26.470
34 0.000 4.267 −1.060 2.180 8.070 17.530
35 23.400 0.074 −24.340 1.410 0.030 32.550
36 22.600 0.693 −35.690 0.570 12.320 22.260
37 0.000 3.738 2.020 1.720 5.200 9.250
38 0.000 3.608 3.450 1.130 18.720 24.630
39 0.000 1.714 1.200 0.040 11.950 −25.070
40 0.000 2.481 −0.720 0.540 16.730 −45.870
41 11.300 0.870 0.780 1.310 23.950 13.420
42 11.600 2.459 −4.180 1.740 25.280 44.850
43 24.400 −0.235 1.760 0.180 34.160 −46.950
44 10.700 1.765 −4.120 2.310 21.400 21.470
45 0.000 2.447 −0.100 1.130 −3.850 32.860
46 0.000 4.397 −4.160 2.650 −2.590 25.230
47 0.000 3.868 0.750 2.040 19.460 31.890
48 11.000 2.999 6.400 0.190 26.000 −28.970
49 0.000 1.103 0.440 0.000 16.290 18.610
50 0.000 3.314 −1.550 6.420 24.380 −1.590
51 0.000 3.339 −3.500 0.180 17.050 6.570
52 24.400 0.294 −27.810 0.680 13.190 −18.180
53 22.700 0.305 1.860 −0.390 9.080 −6.130
54 0.000 2.007 −4.510 0.380 22.980 10.620
55 0.000 2.641 −4.110 −4.480 4.040 16.020
56 0.000 2.627 1.240 0.940 24.370 29.080

Test Set
T1 18.800 −0.338 −2.910 −1.500 11.400 19.510
T2 46.700 0.110 −3.630 9.130 7.370 20.070
T3 44.100 1.999 44.100 7.270 −14.000 16.830
T4 46.700 1.980 −29.300 9.850 8.960 36.580
T5 62.700 0.260 −16.030 13.570 7.430 2.870
T6 98.500 0.380 98.500 7.690 −4.070 72.840
T7 5.400 4.641 −6.780 9.070 −2.460 22.280

a See text and Tables II and III for definitions of the terms. All energies are in kcal/mol
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(10). Three of the descriptors found in the five-term log BB
MI-QSAR model reflect the behavior of the solute in the
membrane and/or the entire membrane-solute complex.
Thus, the blood–brain partitioning process seems from the
MI-QSAR models to largely involve interactions of the solute
in a phospholipid-rich membrane medium.

A mechanistic interpretation of each of the MI-QSAR
model descriptors is possible which, in turn, permits the re-
alization of a composite self-consistent picture of the blood–
brain partitioning process;

1. The PSA of the solute is the dominant descriptor of
this training set. This descriptor ranges from 0 to 139.1Å2 for
the molecules of the training set. Overall, this descriptor sug-
gests that as PSA of a solute decreases, log BB increases. This
is in agreement with the observation that highly polar mol-
ecules do not easily enter the hydrophobic environment of the
BBB.

2. As the octanol/water partition coefficient (ClogP) of
the solute molecule increases, log BB also increases. Thus,
lipophilic drugs have a greater BBB permeability than hydro-
philic drugs, which again is in agreement with general obser-
vations.

3. As the composite intermolecular electrostatic and hy-
drogen bond interaction energy between the solute and mem-
brane for the lowest energy “binding” state, EMS(chg + hbd),
becomes more stable, log BB increases. This relationship sug-
gests that strong binding between the membrane and solute
increases BBB permeation. The values of EMS(chg + hbd) are
negative for most solutes in the training set.

4. The higher the torsion energy of the solute, ESS(tor),
within the membrane for the preferred binding state, the
higher its log BB. This relationship would, in turn, suggest
that as the solute becomes more flexible within the mem-
brane, the greater would be its log BB value.

5. A positive regression coefficient for �ETT(1–4) indi-
cates that the greater the change in 1–4 nonbonded energy of
the system upon uptake of the solute into the membrane, the
higher its log BB value. �ETT(1–4) is the difference between
the 1–4 nonbonded energy of the complex and that of the free
solute and membrane. The presence of �ETT(1–4) in the MI-
QSAR model suggests that an increase in the conformational
flexibility of the entire DMPC-solute complex, caused by the
uptake of the solute, will increase BBB penetration of the
solute.

6. �ETT(stre + bend) has a negative regression coeffi-
cient in the 6-term MI-QSAR model. This descriptor is not
too significant since the 6-term model is likely overfit since its
Q2 value is less than that of the 5-term model. Overall, the
presence of this descriptor suggests that if an increase in BBB
partitioning can’t be fully realized from torsional degrees of

Table V. Observed and Predicted Log BB Values for the 3–6 Term
MI-QSAR Models

Molecule
no. Obs. Log BB

Predicted log BB

3-term 4-term 5-term 6-term

Training set

1 −1.420 −1.390 −1.419 −1.401 −1.349
2 −0.040 −0.261 −0.009 −0.048 −0.008
3 −2.000 −1.032 −1.024 −1.190 −1.335
4 −1.300 −0.599 −0.922 −0.928 −0.839
5 −1.060 −1.109 −1.089 −1.104 −1.070
6 0.110 −0.489 −0.413 −0.113 0.040
7 0.490 0.099 −0.021 −0.056 −0.107
8 0.830 0.836 0.742 0.581 0.471
9 −1.230 −1.282 −1.302 −1.591 −1.785

10 −0.820 −1.690 −1.558 −1.617 −1.589
11 −1.170 −0.997 −1.121 −0.939 −1.004
12 −2.150 −0.930 −1.082 −1.238 −1.403
13 −0.670 −1.047 −0.970 −0.927 −0.745
14 −0.660 −0.934 −0.721 −0.751 −0.756
15 −0.120 −0.416 −0.417 −0.428 −0.437
16 −0.180 0.007 −0.096 −0.031 −0.084
17 −1.150 −0.828 −0.887 −0.967 −1.009
18 −1.570 −1.017 −1.008 −1.125 −1.127
19 −1.540 −1.634 −1.865 −1.707 −1.621
20 −1.120 −0.822 −0.562 −0.674 −0.879
21 −0.730 −0.664 −0.654 −0.676 −0.497
22 −0.270 −0.468 −0.334 −0.114 −0.066
23 −0.280 −0.965 −0.960 −0.843 −0.597
24 −0.460 −0.489 −0.468 −0.577 −0.518
25 −0.240 −0.046 −0.023 0.014 −0.049
26 −0.020 −0.240 −0.180 −0.200 −0.289
27 0.690 0.105 0.210 0.177 0.152
28 0.440 0.175 0.328 0.363 0.415
29 0.140 0.375 0.399 0.551 0.588
30 0.220 0.052 −0.036 −0.051 0.072
31 −0.080 −0.184 −0.267 −0.293 −0.393
32 0.370 0.490 0.381 0.455 0.439
33 1.010 0.760 0.797 0.740 0.672
34 0.900 0.854 0.902 0.838 0.808
35 −0.150 −0.210 −0.183 −0.292 −0.434
36 −0.170 −0.033 −0.017 −0.031 −0.096
37 0.970 0.749 0.780 0.695 0.680
38 1.040 0.720 0.729 0.745 0.703
39 0.080 0.408 0.398 0.371 0.479
40 0.400 0.548 0.553 0.560 0.767
41 0.000 0.042 0.051 0.113 0.101
42 0.240 0.331 0.351 0.419 0.310
43 −0.160 −0.412 −0.470 −0.334 −0.114
44 0.130 0.231 0.277 0.320 0.285
45 0.350 0.540 0.563 0.416 0.278
46 0.810 0.892 0.960 0.817 0.735
47 0.800 0.777 0.820 0.843 0.783
48 0.420 0.383 0.330 0.396 0.558
49 0.040 0.308 0.302 0.311 0.261
50 0.930 0.694 0.893 0.960 1.052
51 0.760 0.708 0.699 0.706 0.725
52 −0.160 −0.175 −0.171 −0.182 −0.100
53 −0.150 −0.286 −0.363 −0.418 −0.412
54 0.270 0.486 0.495 0.553 0.562
55 0.370 0.592 0.431 0.340 0.266
56 0.340 0.564 0.577 0.641 0.589

Test set
T1 −0.06 −0.295 −0.386 −0.418 −0.508
T2 −1.4 −0.770 −0.578 −0.648 −0.714
T3 0.25 −0.181 0.010 −0.206 −0.281

Table V. Continued

Molecule
no. Obs. Log BB

Predicted log BB

3-term 4-term 5-term 6-term

Training set

T4 0 −0.324 −0.083 −0.132 −0.223
T5 −0.34 −1.001 −0.683 −0.752 −0.733
T6 −1.34 −1.724 −1.713 −1.896 −2.210
T7 0.85 0.839 1.103 0.972 0.930
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conformational freedom, valence geometry deformations will
not facilitate transport, but rather actually diminish BBB pen-
etration.

Overall, the family of log BB MI-QSAR models developed in
this study suggests that the blood–brain barrier partitioning
process depends upon three physicochemical factors;

1. The relative polarity of the solute as measured in com-
bination by the total polar surface area and the octanol/water
partition coefficient of the solute. These two properties indi-
cate that, in general, less polar, more lipophilic compounds
partition more readily into the brain.

2. The strength of interaction (binding) of the solute
with the membrane. The greater the binding of the solute to
the membrane, the higher the BBB partitioning. If the solute
does not interact favorably with the membrane, it cannot
cross the BBB and does not enter the brain.

3. The conformational flexibility of the solute in the
membrane and the conformational flexibility of the mem-
brane-solute complex (36). Increasing solute conformational
flexibility within the membrane corresponds to increasing log
BB. Solute conformational flexibility is likely related to the

ease/difficulty of the solute to �worm� through the membrane.
Also, the more flexible the solute-membrane complex upon
uptake of the solute, the greater is log BB. Overall solute-
membrane flexibility is again related to the ease of the solute
to traverse through the membrane.

Veber and coworkers (37) have found increasing solute
molecular flexibility (as measured by the number of rotatable
bonds) promotes a decrease in oral bioavailability. This is
clearly opposite our findings. We think there may be three
possible, and related, explanations to reconcile these seem-
ingly opposite findings. a) The set of oral bioavailability mea-
sures used by Veber and coworkers may be governed by dif-
ferent physicochemical behavior than the log BB measures
used in this work. b) Molecular flexibility is measured by
Veber et al. in terms of the number of rotatable bonds. The
number of rotatable bonds, in turn, is proportional to molecu-
lar weight in most molecules, and this seems to be the case for
the Veber et al. data set. Therefore, it is possible that the
number of rotatable bonds is a playing the role of a masked
variable for molecular weight, and the real relationship is
increasing molecular weight corresponds to a decrease in log
BB. c) A plausible and, likely, global relationship between log
BB and molecular flexibility is that some amount of flexibility
enhances log BB, but too much flexibility will diminish log
BB. That is, a parabolic relationship exists between log BB
and molecular flexibility. The range in the number of rotat-
able bonds is larger for the Veber et al. data set than that of
the data set used in this MI-QSAR study. Thus, the Veber et
al. model �sees� the decrease in log BB with increasing flex-
ibility part of the parabola, while the MI-QSAR model ex-
plores the increase in log BB with an increase in flexibility
side of the parabola.

Several non-MI-QSAR computational models to describe
and/or predict BBB partitioning have been reported (8–14)
that involve a large range of descriptors. There is little con-
sistency among the descriptors used in these reported BBB
penetration models. The most prevalent descriptors found
among the reported models are the 1-octanol/water partition
coefficient (log P), some measure of solute volume and some

Fig. 3. A diagnostic plot of the MI-QSAR models: R2 is the correla-
tion coefficient and Q2 is the cross-validation correlation coefficient
of the best x-term model, where x is plotted on the X-axis for the 56
compounds of the training set. R2 Full is the correlation coefficient
between the predicted and the observed values for all compounds,
that is, the training and test compounds.

Fig. 2 . Comparison of the experimental log BB values for all the molecules of the training
and test sets to the corresponding predicted log BB as predicted by the 5-term MI-QSAR
model.
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measure of solute polarity. However, these three classes of
descriptors are not all found in a single model among the
reported blood–brain partitioning models. Moreover, some of
these types of descriptors do not correlate with reported log
BB values. For example, Young et al. (38) report for a series
of 20 structurally diverse histamine H2 antagonists that log
BB does not correlate with log P, but does correlate with the
both log P(cyclohexane) and the difference in log P and log
P(cyclohexane). Hence, it is not feasible to explain BBB pen-
etration with log P, or another polarity descriptor alone, and
to attempt to do so would likely be an attempt at oversimpli-
fication of the mechanism of penetration.

Our view is that these lipophilicity, size and polarity de-
scriptors of the reported non-MI-QSAR models are capturing
glimpses, or pieces, of the three-dimensional process of
blood–brain barrier partitioning. MI-QSAR analysis reveals
blood–brain barrier partitioning to be governed by solute
flexibility, solute-membrane flexibility, solute-membrane
binding as well as solute lipophilicity and polarity.
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